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The effects of polymolecularity on the second and third light-scattering virial coefficients are calcu-
lated for some sample distributions and compared to the values obtained from an approximate treat-
ment by Burchard and coworkers. It is concluded that the Burchard scheme, designed to facilitate the
evaluation of light scattering data for associating systems, is generally reliable.

A few years ago, one of us1 proposed a scheme for interpreting light-scattering data
(LS) on associating polymers in solution. This scheme, which has been quite successful
in applications to experimental results, is based on several assumptions which, while
physically plausible, are only approximate. The purpose of the present paper is to explore,
by means of some specific examples, the reliability of these underlying approximations.

THEORETICAL

The Scheme

At sufficient low concentrations, below the onset of extensive overlap, the forward
Rayleigh scattering can be described by a virial expansion:

Mapp
−1  ≡ Kc/R0 = Mw

−1 + 2A2
LSc + 3A3

LSc2 + …  , (1)
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where R0 is the Rayleigh ratio extrapolated to zero scattering angle, c is the polymer
concentration, Mw is the weight-average molar mass, and K is the usual optical con-
stant. If the polymer contains only a single species, the virial coefficients A2

LS and A3
LS

are identical to those in the osmotic pressure expansion

π∗ /cRT = Mn
−1 + A2c + A3c

2 + …  , (2)

where π* is the osmotic pressure and Mn is the number-average molar mass. However,
for a polymolecular solute the light-scattering and osmotic virial coefficients are not the
same. For A2

LS the relations are relatively simple and well known2, but the complete
expression3 for A3

LS is less commonly available.
The approximate scheme to be investigated makes the assumptions that the virial

coefficients depend only on Mw, and in particular that they follow the relations

A2
LS = KAMw

a−1 (3)

and

A3
LS = gAMw(A2

LS)2  . (4)

In these expressions KA, a and gA are constants independent of molar mass but dependent
on solvent quality and polymer structure. For example, the values a 0.8, g 0.29 are used
for flexible coils in good solvents, the set a 0.5, g 1.3 is employed for highly swollen
aggregates or randomly branched clusters, and a 0, g 5/8 describes hard spheres. Equa-
tions (3) and (4) have been tested for several non-associating systems in good solvents,
and fit the data quite well. It may be recalled that Eq. (4) for a single polymer species
was suggested long ago4 on the basis of an approximate theory. It is unlikely to be
reliable in poor solvents near theta conditions, where new terms specifically due to
ternary segment interactions will affect the virial coefficients5.

For associating systems at equilibrium, Eqs (3) and (4) are retained, but with the
recognition that the weight-average molar mass is now a function of concentration. In
such cases, Eq. (1) reads

[Mapp(c)]−1 = [Mw(c)]−1 + 2cKn[Mw(c)]a−1 + 3gAc2KA
2 [Mw(c)]2a−1 + …. (5)
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In particular, if higher terms in the expansion are negligible, the use of gA = 1/3 leads
to simple analytical and graphical results. It has been applied to solutions of β-galacto-
sidase6 and of cellulose-2.5-acetate7 with self-consistent results. In essence, the above-
described scheme purports to establish a reliable basis for the behavior of normal,
non-associating polymers in dilute solution – a sort of corresponding-states reference –
and then to attribute all deviations from this basis to association, simply by allowing
the weight-average molar mass to become a concentration-dependent quantity Mw(c).
In what follows, we study the reliability of the basis, as expressed in Eqs (3) and (4),
for some particluar polymolecular systems.

Polymolecularity and Virial Coefficients

We now embark on a comparison of Eqs (3) and (4) with more detailed considerations
of the second and third light-scattering virial coefficients. As given by Kurata3, the
general expressions for a polymolecular solute are

A2
LS = (2Mw

2 )−1 ∑∑ wiMiwjMjBij (6)

and

A3
LS = (3Mw

−2)−1∑∑∑ wiwjwkMiMjBijk −

 − (3Mw
3 )−1∑∑∑∑wiwjwkwlMiMjMkMl(BikBjk − BikBjl)  , (7)

where wi is the weight fraction of species i in the polymer sample and of course Mw =
ΣwiMi. In these expressions, the coefficients Bij and Bijk are simply related to the more
conventional virial coefficients; for example, for a single monodisperse polymer solute
Bii = 2A2. It may be remarked that the second term on the r.h.s. of Eq. (7) has some-
times been ignored, probably because it vanishes identically in the monodisperse case.

Now combining rules for the cross-coefficients (e.g., Bij for i ≠ j) are needed. There
are no exact general rules independent of molecular details. However, studies of soft
repulsive potentials of interaction among small spherical molecules in the gas phase
show8 that simple geometric-mean rules are very reliable, and are superior to assuming
the additivity of effective radii. Accordingly we take

Bij = (BiiBjj)1/2 (8)

and
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Bijk = (BiiiBjjjBkkk)1/3  . (9)

For flexible chains in good solvents, the sphericalized potentials of mean force are
indeed softly repulsive, so that Eqs (8) and (9) are physically reasonable. A more de-
tailed discussion of the combining-rule problem for the second coefficient is given by
Casassa9. For hard spheres, Eqs (8) and (9) are not correct, and the radii are additive,
but we do not investigate this more complicated case8 here.

It now remains only to adapt Eqs (3) and (4) to the general case. This amounts to
taking

Bii = 2KAMi
a−1 (3′)

and

Biii = 3gAKA
2 Mi

2a−1  . (4′)

The algebra of using these relations in Eqs (6)–(9) is straightforward, and leads to the
folowing results,

A2
LS/KAMw

a−1 = [µ


a + 1

2



]2/[µ(1)]a+1  , (10)

A3
LS/gAMw(A2

LS)2 = µ(1)µ


2a − 1

3






µ



2a + 2

3
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
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2
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2
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−4

 −

− (4/3gA)
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

µ(a)µ(1)
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2
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 − 1
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  , (11)

where the moments of the molar mass distribution are defined as

µ(ν) ≡ ∫ 
0

∞

Mνw(M) dM (12)

with respect to the normalized weight-distribution function w(M). Thus, as usual,

µ(0) = 1;   µ(1) = Mw;   µ(−1) = Mn
−1  . (13)
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It is seen that the r.g.s. of Eqs (10) and (11) each reduce to unity for a monodisperse
solute.

CALCULATIONS AND DISCUSSION

We now apply Eqs (10)–(12) to several well-known distribution functions10.
a) The Schulz–Zimm (SZ) or “gamma” distribution is

w(M) dM = [Γ(z + 1)]−1qz + 1Mz exp (−qM) dM (14)

and has the familiar properties Mw ≡ µ(1) = (z + 1)/q and Mn
−1 = q/z, so that the usual

polymolecularity index is

Mw/Mn = 1 + z−1  . (15)

The general equation for the moments is

µ(ν) = q−νΓ(1 + z + ν)/Γ(1 + z) = Mw
ν Γ(1 + z + ν)/(1 + z)νΓ(1 + z)  . (16)

TABLE I
Values of A2

LS/KAMw
a−1

z
a = 0.8, gA = 0.29 a = 0.5, gA = 0.33 a = 0.0, gA = 0.625

SZ LN SZ LN SZ LN

  0.1 0.9307 0.8057 0.8564 0.6379 0.8019 0.5491

  0.2 0.9356 0.8511 0.8664 0.7146 0.8161 0.6389

  0.5 0.9469 0.9059 0.8897 0.8138 0.8488 0.7598

  1 0.9589 0.9395 0.9146 0.8781 0.8836 0.8409

  2 0.9718 0.9642 0.9412 0.9268 0.9204 0.9036

  5 0.9854 0.9837 0.9697 0.9664 0.9592 0.9554

 10 0.9919 0.9915 0.9832 0.9823 0.9775 0.9765

 20 0.9958 0.9956 0.9911 0.9909 0.9882 0.9879

 50 0.9982 0.9982 0.9963 0.9963 0.9951 0.9951

100 0.9991 0.9991 0.9981 0.9981 0.9975 0.9975
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The results for this distribution are given in Tables I and II and shown as the unfilled
symbols in Figs 1 and 2 for the dimensionless quantities defined in Eqs (10) and (11).
They would of course be identically unity for all values of z if the scheme was exact.
One sees that even for rather broad distributions (e.g., Mw/Mn ≈ 10) the treatment is
quite successful.

b) The logarithmic normal (LN) distribution function is

w(M) = (Mσ)−1(2π)−1/2 exp [−(ln M − ln M0)2/2σ2]  , (17)

where

ln M0 = ∫ 
0

∞

(ln M)w(M) dM = ln Mw − (σ2/2) (18)

and

Mw/Mn = exp (σ2)  . (19)

The moments are given by

ln µ(ν) = ν ln M0 + (ν2σ2/2)  . (20)
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FIG. 1
Values of reduced light-scattering second virial
coefficient, A2

LS/KAMw
a−1 (C2), as functions of

polymolecularity index z, for several distribu-
tions and polymer structures: 1 a = 0.8, gA =
0.29 (LN), 2 a = 0.8, gA = 0.29 (SZ), 3 a = 0.5,
gA = 0.33 (LN), 4 a = 0.5, gA = 0.33 (SZ), 5 a
= 0, gA = 0.625 (LN), 6 a = 0, gA = 0.625 (SZ)
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We relate the parameter σ of the LN distribution to the parameter z of the SZ dis-
tribution by means of Eqs (15) and (19), i.e.

σ2 = ln (1 + z−1)  . (21)

TABLE II
Values of A3

LS/gAMw(A2
LS)2

z
a = 0.8, gA = 0.29 a = 0.5, gA = 0.33 a = 0.0, gA = 0.625

SZ LN SZ LN SZ LN

  0.1 1.2487 2.1482 1.1789 1.8044 1.1567 1.5648

  0.2 1.2297 1.7558 1.1597 1.4792 1.1223 1.2440

  0.5 1.1868 1.4021 1.1197 1.2226 1.0648 1.0578

  1 1.1422 1.2338 1.0833 1.1180 1.0277 1.0106

  2 1.0961 1.1291 1.0509 1.0605 1.0068 0.9972

  5 1.0486 1.0556 1.0230 1.0245 0.9985 0.9960

 10 1.0266 1.0286 1.0119 1.0122 0.9981 0.9974

 20 1.0140 1.0145 1.0060 1.0061 0.9987 0.9985

 50 1.0058 1.0058 1.0024 1.0024 0.9994 0.9994

100 1.0029 1.0029 1.0012 1.0012 0.9997 0.9997
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FIG. 2
Values of reduced light-scattering third virial
coefficient, A3

LS/gAMw(A2
LS)2 (C3), as functions

of polymolecularity index z, for several dis-
tributions and polymer structures. Numbering
as in Fig. 1
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Results for this distribution are also given in Tables I and II and shown as the filled
symbols in Figs 1 and 2. Here z has been related to σ by means of Eqs (15) and (19).
The scheme is observed to be rather less successful than for the SZ distribution at low z
values, though still not hopelessly bad. We may take some comfort from the rather severe
criticism of the LN distribution offered by Kotliar11, and of course the hard-sphere
results (triangles) are not reliable because Eqs (8) and (9) do not apply to this case.

It is interesting to note the relative contribution of the last term on the r.h.s. of Eq. (11).
For the broadest distributions (z = 0.1), this amounts to only 1.6% for the SZ distribu-
tion and 5% for the LN distribution in the case of flexible coils in good solvents; to
13.5% and 27%, respectively, for randomly branched clusters, and to 31% and 53% for
hard spheres (the least likely case), respectively.

c) It might be suggested that randomly branched aggregates should follow a distribu-
tion based on percolation theory12. Unfortunately such distributions, though similar at
high M to SZ distributions with negative z, are not simple or accurately known for low
M, and so at present we do not pursue this line further.

Our general conclusion, based on Figs 1 and 2, is that the Burchard scheme is indeed
useful.
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